Как сделать регулируемый блок питания с индикацией напряжения и тока своими руками.

 

Тема: как спаять хороший, лабораторный блок питания с регуляцией напряжения.

 

Как сделать регулируемый блок питания с индикацией напряжения и тока самомуДостаточно универсальным и широко применимым является источник питания, у которого имеется возможность плавной регулировки напряжения. Да к тому же если у него стоит цифровой индикатор, отображающий выходное постоянное напряжение и силу тока, что потребляет нагрузка во время работы, это вовсе замечательно! Такой блок питания можно купить, но с этими функциями он будет стоить относительно дорого. А можно и собрать самому из готовых компонентов и электронных модулей. В итоге такой лабораторный, регулируемый блок питания может обойтись вам достаточно дешево.

 

Что содержит в себе трансформаторный блок питания с регуляцией напряжения. Это понижающий трансформатор соответствующей мощности, диодный выпрямительный мостик, фильтрующий конденсатор электролит, электронный модуль регулировки напряжения и модуль измеритель-индикатор, отображающий постоянное напряжение и силу тока (цифровой вольтметр, амперметр). Все эти функциональные части схемы блока питания нужно поместить в подходящий по размерам корпус. Также припаять входные и выходные провода к самой схеме, выводя их наружу.

 

Нужно сначала определится с мощностью нашего лабораторного блока питания с регуляцией напряжения. Напомню, что электрическая мощность равна напряжение умноженное на ток. К примеру, нам нужен источник питания с максимальным выходным напряжением 25 вольт и максимальным током 2 ампера. После перемножения (25*2) получаем 50 ватт. Добавляем небольшой запас по мощности процентов 20. В итоге получаем мощность трансформатора, которая равна 70 ваттам. Зная ее уже подыскиваем соответствующий понижающий трансформатор.

 

 

На вход трансформатора мы подаем 220 вольт переменного тока, а на его выходе (вторичной обмотке) получаем 25 вольт. Для того чтобы получить постоянное напряжение нужен выпрямительный диодный мост. Его мы покупаем либо готовым, или паяем сами из 4х соответствующих диодов. Диоды (готовый диодный мост) должны быть рассчитаны на ток более 2 ампер (поскольку мы ранее определились с максимальной силой тока на выходе). Вполне подойдут диоды на 4 ампера (с запасом). Ну, и обратное напряжение этих диодов, моста должно быть более 25 вольт.

 

Уже на выходе выпрямительного моста мы будем иметь постоянное напряжение, но оно будет скачкообразным. Чтобы сгладить эти скачки нужен фильтрующий конденсатор электролит. В нашем случае вполне подойдет кондер на напряжение 35 вольт с емкостью 5000 микрофарад. Учтите, что такие электролитические конденсаторы имеют полярность. Их нужно строго припаивать плюс к плюсу, а минус к минусу. В противном случае они могут попросту у вас взорваться.

 

Это мы получили простейший блок питания, который выдает на выходе постоянное напряжение около 29 вольт. Почему 29, а не 25? Потому что существует такой эффект — скачкообразное постоянное напряжение после моста при подключенном к нему конденсатором увеличивается так процентов на 18. Так что, либо у нас получится блок питания с максимальным напряжением 29 вольт, либо мы берем трансформатор, у которого вторичная обмотка имеет напряжение около 21,5 вольта, чтобы получить свои 25 вольт.

 

Чтобы этот простой блок питания сделать регулируемым нам понадобится регулятор напряжения. Его можно спаять и самому, схему легко найти в интернете, а можно купить готовый модуль, как сделал это я. Этот электронный модуль регуляции постоянного напряжения стоит достаточно дешево. Приобрести его можно где угодно (радиорынок, посылкой из Китая, интернет магазин).

 

К примеру, мой модуль рассчитан на силу тока в 2 ампера. Пределы регуляции напряжения от 0,7 до 28 вольт. Имеет защиту от короткого замыкания, перегрузки. Плавная регулировка напряжения осуществляется подстроечным резистором, что стоит на самой плате. Имеет небольшие размеры. Этот модуль припаиваем к нашему блоку питания. Выход блока питания подаем на вход модуля регуляции напряжения (на самой плате имеются надписи, где вход, а где выход).

 

 

Ну и еще один полезный модуль нужно будет припаять к нашему лабораторному источнику питания. А именно измеритель индикатор постоянного тока и напряжения (цифровой вольтметр и амперметр). Его я также заказывал посылкой из Китая. Стоит он относительно дешево. На его табло сразу отображаются и сила тока и напряжение. Он достаточно точен 99%. Имеет сзади на своей плате подстроечные резисторы, которыми осуществляется коррекция измеряемых величин. Данный измерительный модуль имеет небольшие, компактные размеры. Легко становится в любой корпус, с подходящими размерами.

 

В итоге, осталось припаять провода входа питания и выхода. Вот и все, наш лабораторный, регулируемый блок питания с защитой от короткого замыкания и перегрузки готов к использованию.

 

 

ps smail

P.S. Данный блок питания обходится достаточно дешево. Особенно если некоторые части снимать с ненужной электротехники (понижающий трансформатор, выпрямительный диодный мостик, фильтрующий конденсатор, сам корпус и провода). Цифровой измерительный модуль вольтметра и амперметра стоит около 3 баксов, а схема регулятора напряжения около 2 баксов. В итоге получается действительно вполне качественный, надежный источник постоянного питания с регулировкой выходного напряжения. Так что советую его собирать своими руками.


Понравилось?
Поставь Плюс »

 

 

knopka

 

 

 

обучающие видеокурсы по электрике, электротехнике