Основные типы схем диодных выпрямителей, описание их работы, достоинства и недостатки каждой схемы

Перед тем, как начать писать про сами схемы диодных выпрямителей для начала, и для новичков, предлагаю разобраться с работой обычного диода. Давайте рассмотрим случай когда диоды имеют прямое и обратное подключение к источнику питания. Ниже на рисунке можно эти два способа подключения.

Прямое и обратное подключение диодов к источнику питания

Допустим у нас имеется источник постоянного тока с напряжением 5 вольт, обычный выпрямительный диод и некоторая нагрузка, которая на рисунке представлена в виде резистора. Диод возьмем типа 1n4007, который может выдерживать ток до 1 ампера и имеет максимальное обратное напряжение до 1000 вольт. Как известно диоды являются полупроводниками. То есть, они способны проводить электрический ток только в одном направлении. На рисунке слева показано прямое подключение диода, с правой стороны мы видим обратное подключение.

При прямом включении диод открыт и достаточно свободно пропускает через себя ток. Но при этом, в любом случае, на диоде будет присутствовать небольшое падение напряжения. Величина этого напряжения у обычных диодов где-то порядка 0,6 вольт. Причем, чем больше сила тока, что проходит через диод, тем это падение напряжения также может увеличиваться (и быть более 1 вольта). Следовательно, если на нашем источнике постоянного тока имеется 5 вольт, то минимум диод оставит на себе 0,6 вольт. И на самой нагрузке уже будет напряжение на 0,6 вольт меньше, а именно вместо 5 вольт будет 4,4 вольта. Это явление обязательно нужно учитывать при расчетах своих блоков питания. При прямом включении в первую очередь имеет значение, какой максимальный ток может пропустить через себя диод, не выходя из строя из-за пробоя (теплового).

При обратном включении диод оказывается полностью закрытым, и ток он в этом случае через себя не пропускает. В этом случае, как видно из рисунка, все напряжение источника питания оседает именно на диоде. И это место подобно разомкнутому ключу. Естественно, нагрузка при этом не работает, поскольку через нее не может пройти электрический ток. Хотя все же токи утечки присутствуют у диодов, но они крайне малы и ими обычно пренебрегают.

Теперь несколько предложений насчет переменного тока и его особенностей. На графике переменный, синусоидальный ток имеет примерно такой вид.

Как выглядит переменное напряжение на входе и выходе силового трансформатора

То есть, у нас есть понижающий трансформатор, работающий с сетевым напряжением 220 вольт. Как на его входе, так и на выходе присутствует именно переменная форма тока и напряжения. Только на входе величина напряжения 220 вольт, а на выходе (в случае понижающего трансформатора) будет допустим 12 вольт. Но форма тока одинаковая. А что именно представляет собой этот переменный ток? Дело в том, что переменный тип тока – это постоянный ток, который меняет свою полярность со временем, имея при этом синусоидальную форму. На рисунке графика, что выше, выше нуля по оси времени, это положительная полуволна. Это когда на одном из двух проводов будет только плюс, а на втором только минус. А ниже этой оси будет отрицательная полуволна. На двух проводах плюс и минус поменяются местами. Переменный ток легко преобразуется и при передачи электроэнергии на большие расстояния имеет меньшие потери в линиях электропередач. Непосредственно для питания электроники переменный тип тока не используется.

Ну, а теперь давайте перейдем к первой схеме самого простого варианта диодного выпрямителя. Это однополупериодный диодный выпрямитель на одном диоде. Его схем представлена на рисунке ниже.

Однополупериодная схема диодного выпрямителя, график тока и напряжения на выходе

Как видно в этой простой схеме диод один и он подключен последовательно с концами выходной обмотки трансформатора. Работа данного типа выпрямителя сводится к тому, что он просто срезает одну полуволну из двух. На рисунке можно увидеть, что на концах вторичной обмотки указан переменный тип тока, а после диода уже постоянный тип тока, но имеющего достаточно большие пульсации. Чтобы сгладить эти пульсации и придать уже выпрямленному току более ровную и прямую форму, более соответствующую постоянному току, после диода ставится электролитический сглаживающий конденсатора.

Сглаживание пульсаций на выходе однополупериодного диодного выпрямителя, график тока и напряжения

Чем больше будет емкость сглаживающего конденсатора, тем лучше будет это самое сглаживание пульсирующего напряжения и тока. А принцип действия сглаживания очень прост. Конденсатор во время импульса заряжается, а когда импульса нет, то в это время конденсатор отдает ранее накопленный электрический заряд. В итоге получается за счет ранее накопленной конденсатором энергии сгладить форму электрического тока.

Из-за низкого КПД подобные схемы однотактных диодных выпрямителей используются крайне редко в силовых трансформаторах (с железным сердечником, работающие с частотой 50 Гц). Поскольку половина габаритной мощности самого трансформатора оказывается на востребованной. Но в маломощных импульсных блоках питания, однотактных обратноходовых они применяются часто. Поскольку сам принцип работы таких ИБП полностью соответствует однотактности и недостаток схемы данного типа выпрямителя полностью компенсируется и перестает быть таковым.

Вторая схема – это двухполупериодный мостовой диодный выпрямитель.

Двухполупериодная мостовая схема диодного выпрямителя и график тока и напряжения на выходе

Данный тип диодного выпрямителя более востребован и чаще всего используется в схемах трансформаторных блоков питания (и не только). Хотя также имеет свои особенности и недостатки. Этот выпрямитель относится уже к типу двухтактных, поскольку выпрямляются сразу два полупериода переменного тока. Схема мостового диодного выпрямителя содержит в себе 4 одинаковых диода, рассчитанных на нужное обратное напряжение и максимальный прямой ток. Как видно на графике отрицательная полуволна просто переворачивается диодами вверх, тем самым дополняя положительную полуволну. В этом случае величина пульсаций уменьшается вдвое, по сравнению с однополупериодной схемой выпрямителя. Но все равно, чтобы эти пульсации свести к минимуму в схему нужно добавить сглаживающий конденсатора. Хотя емкость его уже может быть в два раза меньше предыдущего случая. В мостовой схеме в процессе выпрямления одно из полупериодов участвуют сразу два диода из четырех. Это показано на рисунке ниже.

Недостаток мостовой схемы диодного выпрямителя, большая потеря напряжения на диодах

То есть, электрическая цепь для одного полупериода будет содержать выходную обмотку трансформатора, к концам которой последовательно подключены два диода. И тут сразу можно заметить имеющийся недостаток этой схемы диодного выпрямителя. А именно, это то, что мы на выпрямителе уже теряем более одного вольта, и чем больше ток будет проходить через этот выпрямитель, тем большими будут потери как мощности, так и величины выходного напряжения. Если мы на вторичной обмотке имеем 5 вольт, а диоды как минимум оставят на себе 1,2 вольта, то в нагрузку дойдет только лишь 3,8 вольт. Думаю смысл понятен. Следовательно, данную разновидность диодных выпрямителей целесообразно использовать при малых токах. Поскольку большие токи будут понижать общий КПД схемы.

И последний тип диодного выпрямителя, это двухполупериодный выпрямитель со средней точкой. То есть, это когда выходная обмотка силового трансформатора имеет средний вывод. Рисунок данной схемы можно увидеть ниже.

Двухполупериодная схема диодного выпрямителя со средней точкой, график тока и напряжения на выходе

Этот тип диодных выпрямителей также является двухполупериодным, как и мостовая схема, представленная чуть выше. Имеет такую же величину пульсаций на выходе, которые можно сгладить все тем же электролитическим конденсатором. Хотя в это схеме уже используется всего два диода. Следовательно, меньше диодов, меньше потерь и КПД будет выше, но есть и свои недостатки у схемы. А именно, поскольку в один полупериода работает только одна часть вторичной обмотки, а вторая часть обмотки только во второй полупериод, то получается что увеличивается общая масса и габариты самого силового трансформатора. А это уже ведет к большему расходу железа и меди при изготовлении таких выпрямителей с такими трансформаторами. Ну, и больший вес и размеры, что также не всегда удобно. Но вот если эту схему использовать для высокочастотных импульсных трансформаторов, то имеющейся недостаток перестает быть таковым

Как известно, при увеличении рабочей частоты трансформатора значительно уменьшаются его размеры и вес. И в таких трансформаторах уже используются на железные сердечники, а ферритовые, вес которых также меньше. Следовательно, если импульсный блок питания работает допустим на частоте 50 кГц, то размеры трансформатора уже будут в разы меньше, чем в случае с трансформатором, рассчитанного на частоту 50 Гц. Так что двухполупериодные диодные выпрямителя со средней точкой повсеместно используются именно в импульсных блоках питания. Примером может быть обычный компьютерный БП.

Видео по этой теме:

P.S. Так что при разработке своих блоков питания обязательно учитывайте все имеющиеся достоинства и недостатки, присущие в вышеописанным типам диодных выпрямителей. Правильный выбор нужного типа диодного выпрямителя, это залог высокого КПД и минимальных размеров и массы конечного устройства.

 



Рекомендуемый материал по схожей тематике